ࡱ> EGD %3bjbjв 4Hк_к_%+`````tttt<ta$O~```*``hP10ax`(aX &: March 25, 1999 Note on P450 evolution in yeasts and early eukaryotes. The yeast Saccharomyces cerevisiae has three cytochrome P450 genes CYP51 (lanosterol 14 alpha demethylase), CYP56 (DIT2 a dityrosine forming enzyme required for spore wall biosynthesis), and CYP61 (22 sterol desaturase). The sequences of these proteins are given below. The Fission yeast Schizosaccharomyces pombe is a second fungal genome that is nearing completion (82.7% on Mar 22, 1999) and will be completed this year. So far there are only two P450s found in S. pombe. These are homologs of the CYP51 and CYP61 sequences. The CYP56 sequence has no homolog in S. pombe yet. The CYP56 sequence may be specific to the spore wall biosynthesis program of yeast so that it is absent in S. pombe. A dityrosine bluish fluorescence has been seen in Candida albicans Smail et al., 1995. Candida albicans is closely related to S. cerevisiae and so it could have the DIT2 gene. S. pombe is more distantly related, perhaps branching from yeast 500-1000 million years ago. A tree of fungal species showing S. cerevisiae, C. albicans, S. pombe, Neurospora crassa and others is given here . The Candida albicans genome is also being sequenced. The results from these three genomes should help to clarify the history of P450s in fungi. The two P450s CYP51 and CYP61 are found in all three species, but CYP56 is only in S. cerevisiae so far. If CY56 is in C. albicans, but not in pombe, then it seems probable that CYP56 evolved from CYP51 or CYP61. The ancestral yeast may have had only the two P450s and not three. Since CYP61 is a later enzyme in the ergosterol pathway, it is probable that CYP61 evolved from a duplication and divergence of the CYP51 gene. This would suggest that the ancestral eukaryote had only CYP51, essential for the formation of cholesterol and related sterols. These are characteristic of eukaryotes and it is expected that cholesterol/ergosterol biosynthesis must have existed in the very earliest eukaryotes. It should be noted that Candida species also have the CYP52 family of P450s that metabolize alkanes. These are not found in S. cerevisiae or pombe. The question arises did a progenitor CYP52 P450 exist in the common ancestor that was lost in S. cerevisiae and pombe, or did alkane hydroxylases also evolve from the CYP51 ancestor. This question may also be reversed. Did the common ancestor to all eukaryotes bring with it an alkane or fatty acid hydroxylase that gave rise to CYP51. The CYP52 sequences are most like a cluster of bacterial P450s called the eukaryote-like bacterial P450s. These include CYP102 (a fatty acid hydroxylase) and CYP110. This cluster next joins with the CYP4 clan that also includes fatty acid hydroxylases. This may be the more parsimonious history of eukaryotic P450s, that they derived from a eukaryote-like bacterial fatty acid hydroxylase and gave rise to CYP51 and cholesterol biosynthesis very early on in the eukaryote lineage. Mutagenesis experiments on CYP2C2 have shown that a single amino acid substitution S473V allows CYP2C2 to accept progesterone as a substrate, when CYP2C2 is normally a lauric acid hdroxylase, so this is not a far fetched idea. Ramarao M, Kemper B, 1995. It will be useful to know the distribution of CYP52 sequences among the fungi. If they are only found among the fungi related to Candida, but not in Neurospora, Penicillium, or S. Pombe, then these might represent a novel development of the Candida related yeasts. The genome sequence of Giardia is also being done Giardia genome project page. The position of Giardia on the tree of life is in flux at the moment. It was thought to be very ancient, one of the earliest eukaryotic branches, but this is being revisited in the light of more recent studies. Several amitochondriate eukaryotes are being reexamined, since HSP sequences in these organisms appear to be derived from mitochondrial genes. Therefore, the loss of mitochondria is now thought to have happened in these species. In any event, the Giardia branch is still earlier than the plant-animal-fungi divergences. Any P450s in Giardia will possibly be primitive features. The only problem with this organism is its anaerobic habitat. It may have dumped any primitve P450s it had, since it is an anaerobe. After 12000 sequence reads, no P450 has been found in Giardia, but a solid match has been found to the NADPH cytochrome P450 reductase 26% identical to the N terminal half (e-9). query seq is Giardia, Sbjct is rat reductase. Query: 414 IPRGTIIYMTCTFFAGEHPPASKEFIAWLQTVNPSLRPFRDIRFAVFGMGSKNYTTFCAA 593 I + +++ T+ G+ +++F WLQ + L ++FAVFG+G+K Y F A Sbjct: 128 IDKSLVVFCMATYGEGDPTDNAQDFYDWLQETDVDLT---GVKFAVFGLGNKTYEHFNAM 184 Query: 594 SKNADKSIEIFGGTRILDALHLDRDEFKSDDSAYIHWKK-------DLFKVLGLSEQPVI 752 K D+ +E G RI + D D +D +I W++ + F V E+ I Sbjct: 185 GKYVDQRLEQLGAQRIFELGLGDDDGNLEED--FITWREQFWPAVCEFFGVEATGEESSI 242 Query: 753 STNKIIVTKNTSLPDKWVCDVS----------PLGYKRGIMSKV---KVLSDGKVDGVVH 893 +++V ++ + + ++ P K ++ V + L+ G ++H Sbjct: 243 RQYELVVHEDMDVAKVYTGEMGRLKSYENQKPPFDAKNPFLAAVTANRKLNQGTERHLMH 302 Query: 894 L-YEITCPCMKYEAGGHCAILPRN 962 L +I+ ++YE+G H A+ P N Sbjct: 303 LELDISDSKIRYESGDHVAVYPAN 326 This sequence is from the Giardia genome project at the Marine Biological Laboratories, Woods Hole, MA. Dictyostelium discoideum is another primitive eukaryote whose genome is being sequenced. In this case there are already 45 ESTs representing 18 different P450 genes(Dictyostelium sequences). This shows that eukaryotes more ancient than yeast can have numerous P450s. One of these ESTs is the probable CYP51 of Dictyostelium (AU033519). One of these 18 sequences is complete. The other full length sequences will be needed to compare them to the fungal sequences, but there is no strong candidate for a CYP61. >S. pombe CYP61 C22 sterol desaturase MEPSDQIIRFNDKFTTISYLPWILIMQKGHIPGPRFKIPFMGSFLDSMKPTFEKYNAKWQ TGPLSCVSVFHKFVVIASERDLARKILNSPSYVQPCVVDAGKKILKHTNWVFLDGRDHIE YRKGLNGLFTTRALASYLPAQEAVYNKYFKEFLAHSKDDYAQYMIPFRDINVATSCRTFC GYYISDDAIKHIADEYWKITAAMELVNFPIVLPFTKVWYGIQSRKVVMRYFMKAAAESRK NMEAGNAPACMMEEWIHEMIETRKYKSENKEGAEKPSVLIREFSDEEISLTFLSFLFASQ DATSSAMTWLFQLLADHPDVLQKVREEQLRIRKGDIDVPLSLDLMEKMTYTRAVVKECLR LRPPVLMVPYRVKKAFPITPDYTVPKDAMVIPTLYGALHDSKVYPEPETFNPDRWAPNGL AEQSPKNWMVFGNGPHVCLGQRYAVNHLIACIGKASIMLDWKHKRTPDSDTQMIFATTFP QDMCYLKFSPFDASTVDWKNSKEAFSNEAVSAATVETESA >Sacchromyces CYP61 C22 sterol desaturase MSSVAENIIQHATHNSTLHQLAKDQPSVGVTTAFSILDTLKSMS YLKIFATLICILLVWDQVAYQIKKGSIAGPKFKFWPIIGPFLESLDPKFEEYKAKWAS GPLSCVSIFHKFVVIASTRDLARKILQSSKFVKPCVVDVAVKILRPCNWVFLDGKAHT DYRKSLNGLFTKQALAQYLPSLEQIMDKYMDKFVRLSKENNYEPQVFFHEMREILCAL SLNSFCGNYITEDQVRKIADDYYLVTAALELVNFPIIIPYTKTWYGKKTADMAMKIFE NCAQMAKDHIAAGGKPVCVMDAWCKLMHDAKNSNDDDSRIYHREFTNKEISEAVFTFL FASQDASSSLACWLFQIVADRPDVLAKIREEQLAVRNNDMSTELNLDLIEKMKYTNMV IKETLRYRPPVLMVPYVVKKNFPVSPNYTAPKGAMLIPTLYPALHDPEVYENPDEFIP ERWVEGSKASEAKKNWLVFGCGPHVCLGQTYVMITFAALLGKFALYTDFHHTVTPLSE KIKVFATIFPKDDLLLTFKKRDPITGEVFE >Candida albicans AL033396 71% to Saccharomyces CYP61 MNSTEVDNLPFQQQLTSFVELAVAKATGSPITTLFTIIFLILSY DQLSYQINKGSIAGPRFKFYPIIGPFLESLDPKFEEYKAKWDSGELSCVSIFHKFVVI ASSRDLARKILSSPKYVKPCVVDVAIKILRPTNWVFLDGKQHTDYRRSLNGLFSSKAL EIYIPVQEKYMDIYLERFCKYDGPREFFPEFRELLCALSLRTFCGDYITEDQIALVAD NYYRVTAALELVNFPIIIPYTKTWYGKKIADDTMKIFENCAAMAKKHINENNGTPKCV MDEWIHLMKEAREKHSEDPDSKLLVREFSNREISEAIFTFLFASQDASSSLACWLFQI VADRPDIVAKIREEQLRVRNNNPDVRLSLDLINEMTYTNNVVKESLRYRPPVLMVPYV VKKSFPVTESYTAPKGAMIIPTLYPALHDPEVYDEPDSFIPERWENASGDMYKRNWLV FGTGPHVCLGKNYVLMLFTGMLGKFVMNSDMIHHKTDLSEEIKVFATIFPKDDLILEW KKRDPLKSL >S. pombe CYP51 lanosterol 14 alpha demethylase MAFSLVSILLSIALAWYVGYIINQLTSRNSKRPPIVFHWIPFVGSAVAYGMDPYVFFREC RAKYGDVFTFVCMGRKMTAFLGVQGNDFLFNGKLADLNAEEAYSHLTTPVFGKDVVYDIP NHVFMEHKKFIKSGLGFSQFRSYVPLILNEMDAFLSTSPDFGPGKEGVADLLKTMPVMTI YTASRTLQGAEVRKGFDAGFADLYHDLDQGFSPVNFVFPWLPLPRNRRRDRAHKIMQKTY LKIIKDRRSSTENPGTDMIWTLMSCKYRDGRPLKEHEIAGMMIALLMAGQHTSAATIVWV LALLGSKPEIIEMLWEEQKRVVGENLELKFDQYKDMPLLNYVIQETLRLHPPIHSHMRKV KRDLPVPGSKIVIPANNYLLAAPGLTATEEEYFTHATDFDPKRWNDRVNEDENAEQIDYG YGLVTKGAASPYLPFGAGRHRCIGEQFAYMHLSTIISKFVHDYTWTLIGKVPNVDYSSMV ALPLGPVKIAWKRRN >Saccharomyces CYP51 lanosterol 14 alpha demethylase MSATKSIVGEALEYVNIGLSHFLALPLAQRISLIIIIPFIYNIV WQLLYSLRKDRPPLVFYWIPWVGSAVVYGMKPYEFFEECQKKYGDIFSFVLLGRVMTV YLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVIYDCPNSRLMEQKKFVKGALTK EAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMR AKLDTDFAYLYSDLDKGFTPINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNN DIQDRDLIDSLMKNSTYKDGVKMTDQEIANLLIGVLMGGQHTSAATSAWILLHLAERP DVQQELYEEQMRVLDGGKKELTYDLLQEMPLLNQTIKETLRMHHPLHSLFRKVMKDMH VPNTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNKDSASSYSVGEEVDYGFG AISKGVSSPYLPFGGGRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKTVPPPDFTS MVTLPTGPAKIIWEKRNPEQKI >Candida albicans CYP51 X13296 MAIVETVIDGINYFLSLSVTQQISILLGVPFVYNLVWQYLYSLR KDRAPLVFYWIPWFGSAASYGQQPYEFFESCRQKYGDVFSFMLLGKIMTVYLGPKGHE FVFNAKLSDVSAEDAYKHLTTPVFGKGVIYDCPNSRLMEQKKFAKFALTTDSFKRYVP KIREEILNYFVTDESFKLKEKTHGVANVMKTQPEITIFTASRSLFGDEMRRIFDRSFA QLYSDLDKGFTPINFVFPNLPLPHYWRRDAAQKKISATYMKEIKSRRERGDIDPNRDL IDSLLIHSTYKDGVKMTDQEIANLLIGILMGGQHTSASTSAWFLLHLGEKPHLQDVIY QEVVELLKEKGGDLNDLTYEDLQKLPSVNNTIKETLRMHMPLHSIFRKVTNPLRIPET NYIVPKGHYVLVSPGYAHTSERYFDNPEDFDPTRWDTAAAKANSVSFNSSDEVDYGFG KVSKGVSSPYLPFGGGRHRCIGEQFAYVQLGTILTTFVYNLRWTIDGYKVPDPDYSSM VVLPTEPAEIIWEKRETCMF >Saccharomyces CYP56 MELLKLLCLILFLTLSYVAFAIIVPPLNFPKNIPTIPFYVVFLP VIFPIDQTELYDLYIRESMEKYGAVKFFFGSRWNILVSRSEYLAQIFKDEDTFAKSGN QKKIPYSALAAYTGDNVISAYGAVWRNYRNAVTNGLQHFDDAPIFKNAKILCTLIKNR LLEGQTSIPMGPLSQRMALDNISQVALGFDFGALTHEKNAFHEHLIRIKKQIFHPFFL TFPFLDVLPIPSRKKAFKDVVSFRELLVKRVQDELVNNYKFEQTTFAASDLIRAHNNE IIDYKQLTDNIVIILVAGHENPQLLFNSSLYLLAKYSNEWQEKLRKEVNGITDPKGLA DLPLLNAFLFEVVRMYPPLSTIINRCTTKTCKLGAEIVIPKGVYVGYNNFGTSHDPKT WGTTADDFKPERWGSDIETIRKNWRMAKNRCAVTGFHGGRRACLGEKLALTEIRISLA EMLKQFRWSLDPEWEEKLTPAGPLCPLNLKLKFNENIME Percent identities from Do-it-yourself WU-BLAST (some partial alignments) 51 Sc 51 Sp 51 Ca 61 Sc 61 Sp 61 Ca 56 Sc CYP51 Sc 49% 65% 26% 25% 26% 23% CYP51 Sp 47% 24% 23% 24% 22% CYP51 Ca 29% 24% 24% 26% CYP61 Sc 51% 69% 27% CYP61 Sp 52% 28% CYP61 Ca 26% CYP56 Sc The C. albicans sequences are more closely related to S. cerevisiae than to pombe as expected. If a CYP56 homolog exists in albicans it should be about 65-69% identical. FGL L R  n . 067=DPRP|$tPKGJ!"nO0hXhXOJQJ^J`FGL L R  n . 067gdX7=DPRP|$tPKgdXGJ!"nO0x9:gdX0x9:G 0!m!!!!$"a""""##/#\#### $H$$$$$4%S%T%%%%%.&i&&&&'U''''''(E(((((9)v))))))&*a****+M+++++,,5,b,,,,-N-hXhXOJQJ^J`G 0!m!!!$"a"""##/#\### $H$$$$4%S%T%gdXT%%%%.&i&&&'U'''''(E((((9)v)))))&*a***+gdX+M++++,,5,b,,,-N----:.O.P.e.../C/~////0W0X0gdXN-----:.O.P.e..../C/~/////0W0X000000%1&1f1g111111*2+2k2l2u2v2w222#3$3%3hXhXOJQJ^J.X00000%1&1f1g11111*2+2k2l2u2v2w22#3$3%3gdX21h:p.?/ =!"#$% x666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH66666666666666666666666666666666666666666666666666666666666666666p62&6FVfv2(&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@66666 OJPJQJ_HmH nH sH tH @`@ NormalCJ_HaJmH sH tH DA D Default Paragraph FontRiR 0 Table Normal4 l4a (k ( 0No List DZ@D ?0 Plain TextCJOJQJ^JaJJ/J ?0Plain Text CharCJOJQJ^JaJPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭Vj\{cp/IDg6wZ0s=Dĵw %;r,qlEآyDQ"Q,=c8B,!gxMD&铁M./SAe^QשF½|SˌDإbj|E7C<bʼNpr8fnߧFrI.{1fVԅ$21(t}kJV1/ ÚQL×07#]fVIhcMZ6/Hߏ bW`Gv Ts'BCt!LQ#JxݴyJ] C:= ċ(tRQ;^e1/-/A_Y)^6(p[_&N}njzb\->;nVb*.7p]M|MMM# ud9c47=iV7̪~㦓ødfÕ 5j z'^9J{rJЃ3Ax| FU9…i3Q/B)LʾRPx)04N O'> agYeHj*kblC=hPW!alfpX OAXl:XVZbr Zy4Sw3?WӊhPxzSq]y %+H0N-%3"7T%+X0%3 !#l * = H  rsx}hu((((,).)))'+ @ B = H {[_DHGMNY'+3333333333$+'+$+'+.?X1'G{%+'+@%+0@UnknownG.[x Times New Roman5^Symbol3. *Cx Arial?= .Cx Courier New7.*{$ Calibri9=  @ ConsolasC.,*{$ Calibri LightA$BCambria Math"qh9•'9•'p$Np$N%X20++@@P $P1'2!xx$ Microsoft Office UserMicrosoft Office User Oh+'0 ( H T `lt|'Microsoft Office User Normal.dotmMicrosoft Office User2Microsoft Office Word@@P@Pp$ ՜.+,0 hp|  'N+  Title  !"#$&'()*+,-./012356789:;=>?@ABCFRoot Entry FжPH1Table%WordDocument4HSummaryInformation(4DocumentSummaryInformation8<CompObjr  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q